wood.

Empowering Floodplain Administrators on 2D Hydraulic Modeling using HEC-RAS 5.0

ASFPM June 2018 Phoenix AZ

Sravan Krovidi PE., CFM.

woodplc.com

- Introduction
- 1D vs 2D
- 2D Basics with HEC-RAS 5.0
- Conclusions

Introduction

1D vs 2D

- Not well defined channel / flow direction
- Flat topography
- Flow directions changes significantly with different stages
- Parallel stream reaches with shared floodplains
- Urbanized areas
- Other Reasons:
 - Need local flow velocities
 - Circulation patterns
 - Variations in lateral velocity

1D vs 2D

COLORADO FLOODPLAIN AND STORMWATER CRITERIA MANUAL

The modeler can use angle points or "doglegs" in cross sections if necessary to satisfy this requirement. The cross section data can be obtained from direct survey of the cross sections, or can be derived from topographic mapping or digital terrain.

Table CH12-601. Differences between One-Dimensional and Two-Dimensional Modeling				
Property or Factor	One-Dimensional Modeling	Two-Dimensional Modeling computed		
flow direction	prescribed (streamwise)			
transverse velocity and momentum	neglected	computed		
vertical velocity and momentum	neglected	neglected		
velocity averaged over	cross sectional area	depth at a point		
transverse velocity distribution	assumed proportional to conveyance	computed		
transverse variations in water surface	neglected	computed		
vertical variations	neglected	neglected		
unsteady flow routing	can be included	can be included		

1D vs 2D....

HEC-RAS 5.0

HEC-RAS 5.0.3	
<u>File Edit Run View Options G</u> IS Tools <u>H</u> elp	
ᄚᄝ⊻ᇴᅸᅆᄬᇔᅸൔൔൔൔൣᇓᆃᢦᢞፇዸᄬॎൔᆮᄪᄪ®℠	<u>I rail</u>
Project:	<u> </u>
Plan:	
Geometry:	
Steady Flow:	
Unsteady Flow:	
Description :	JS Customary Units

2D Theory

- Full Momentum Equation (Dynamic Wave / Shallow Wave)
 - Change in Momentum (Velocity) = Change in Hydrostatic Pressure Gradient.
- Diffusion Wave Equation
 - Bottom friction = Pressure Gradient

2D MODEL with HEC-RAS Inputs

- Establish a Horizontal Coordinate Projection from within HEC-RAS Mapper
- Develop a terrain model in HEC-RAS Mapper
 - Used to establish the geometric and hydraulic properties of the 2D cells and cell faces
 - Useful to perform any inundation mapping
- Build a Land classification data set in order to establish Manning's n values within the 2D analysis area

2D Mesh

- Mesh automatically generated within 2D area boundary
 - Add breaklines to re-align cell faces
 - Manually adjust points
- Underlying terrain provides geometric and hydraulic property tables representing cells and cell faces
 - "Subgrid" allows cells to be partially wet
 - Improves computation time

Geometric Data Window with 2D Area

Define Mannings n values with LandCover

2D Model Inputs...

2D Flow Area: 2D_Area - Connections and References	to this 2D Flo	ow Area		Area
BCLine: BrProng_4 BCLine:		irProng_3 BCLine: DS_Boundary BCLine: BrProng_5		
-				
efaullt Manning's n Value:	0.06		2D Flow Area Com	putation Points
Defaullt Manning's n Value: Edit Land Cover to Manni	0.06 ngʻs n	Mesh cor	2D Flow Area Com	putation Points
Defaullt Manning's n Value: Edit Land Cover to Manni Cell Volume Filter Tol(ft): Face Profile Filter Tol(ft):	0.06 ng's n 0.01 0.01	Mesh cor max cell min cell avg cell	2D Flow Area Com tains: 5226 cells L(103) = 19396.88(sq f L = 4676.58(sq ft) L = 9937.91(sq ft) ata Computation Points on Per	putation Points Et)
Defaullt Manning's n Value: Edit Land Cover to Manni Cell Volume Filter Tol(ft): Face Profile Filter Tol(ft): Face Area-Elev Filter Tol(ft):	0.06 ng's n 0.01 0.01 0.01	Mesh cor max cell min cell avg_cell Gener	2D Flow Area Com tains: 5226 cells L(103) = 19396.88(sq f L = 4676.58(sq ft) L = 9937.91(sq ft) ate Computation Points on Reg Enforce Selected Breaklines (at	putation Points Et) gular Interval with All Breaklines

RAS Mapper

2D Model Inputs...

Running 2D analysis

Write Geometry Information		
ayer) Complete		
Geometry Processol Rveri leach: 8 Curve:	RS: Node Type: Storage Area	
Unsteady Flow Simulation Simulation: Inne: 72.0000 255EP2008 Unsteady Flow Concutations	0:00:09 Deration (10); Deration (20); (0
Stored Map Generation Nap:	1	
Computation Messages		
Geometric Preprocessor HEC-RAS Fitished Processing Geometry Writing Event Conditions Event Conditions Complete Performing Unsteady Flow Simulal	50.3 September 2016 NM HEC-RAS 5.0.3 September 2016	1
Snapshot requested Finished Unstready Flow Simulation		
Writing Results to DSS 1D Proof Process Skipped (simulation is al Computing Storied Results Maps Completed storing 0 results map layer	20)	£
Computations Summary Consultation Task Completing Geometry Proprocessing Geometry (54) Unsteedy Prov Computations(64) Writing to DSS(64)	Tree(*h.m.m) <1 <1 51 <1	

Viewing 2D Output

- RAS Mapper
 - Real-Time Query
 - Dynamic Mapping
 - Managing Map Layers
 - Velocity Mapping
 - Adding profile lines*
 - Results by Cell

Viewing 2D Output cont...

Rasmapper

Conclusions

Technical obstacles:

- 1. Unsteady modeling experience (stability, flows)
- 2. 2D modeler expertise/experience
- 3. Linking 1D to 2D areas
- 4. Hydraulic structures

Regulatory obstacles:

- 1. Unsteady models
- 2. Awareness and acceptance
- 3. Expertise (reviewers)

Next time!....

