An Innovative Approach for Determining Storm Event Rainfall Probabilities

Case Studies Hurricanes Matthew and Joaquin

Driving Force - You May Remember This

October 2015 - Hurricane Joaquin Storm in the Carolinas

And This ...

October 2016 - Hurricane Matthew Storm in the Carolinas

Presentation Outline

- Background and Context
- Rainfall Probability Concepts
- Storm Event Magnitude Approach
- Case Study Applications
- Summary and Conclusions
- Looking Ahead

Background and Context

- Rainfall is the most direct and relatable characteristic that defines magnitude of a storm event
- There are a number of resources that report storm event rainfall
- Natural desire to associate large events with recurrence interval

Problem Statement

- Rainfall generally report as depth totals or animated reflectivity images
- Traditional Reporting Limitations:
- Duration "lost is translation"
- Little to no information on storm pattern

Magnitude of storm unknown, misinterpreted, and/or miscommunicated

The Objective

- Figure out a way to compile rainfall data and compute and visualize storm event magnitudes

Answer the common question: What magnitude storm event did we (or are we going) to have?

- Compute for large areas quickly
- Visualize near real-time observed and forecast precipitation probabilities
- Retroactively compute probabilities for historic events
- Integrate wide range of storm magnitudes - 2 -yr through $500-\mathrm{yr}+$
- Handle range of storm durations
-6-hr, 12-hr, 24-hr, 7-day, etc.

Rainfall Probability Concepts

Basic Inputs

- When, where, and how much it rained
- Rainfall amounts distributed over time
- Spatial location
- Statistical rainfall probability information
- Depth-Duration-Frequency (DDF)

Data Sources

- Rainfall Amounts
- Rain gages
- Radar-Based:
- NEXRAD/Radar Products
- NWS River Forecast Center (RFC) Products
- NSSL Multiple Radar / Multiple Sensor (MRMS)
- Rainfall Probability
- NOAA Atlas 14 (successor of TP-40)
- USGS gage studies
- Local storm design manuals

Gage-Based Rainfall Data

Pros

- Most accurate
- Near real-time readings

Cons:

- Point-Based Reading
- Incomplete/Inconsistent spatial distribution

NC Rain Gages

NC Thiessen Polygons
(250 sq mi avg area)

Radar-Based Rainfall Data

Pros

- Complete coverage
- "Area" based estimates

Cons:

- Less Accuracy
- Ease of use
- Not as "real-time"

NEXRAD Data from Greenville, SC Station

Precipitation Shapefile Download

| File Name | Files Included | Size |
| :---: | :---: | :---: | :---: |
| nws_precip_2015111808.tar.gz | nws_precip_2015111808.shp
 nws_precip_2015111808.shx
 nws_precip_2015111808.dbf | Approx
 nws |

General Information

The precipitation data are quality-controlled, multi-sensor (radar and rain gauge) precipitation estimates obtained from National Weather Service (NWS) River Forecast Centers (RFCs). The original data are in XMRG format and projected in the Hydrologic Rainfall Analysis Project (HRAP) grid coordinate system, a polar stereographic projection true at $60^{\circ} \mathrm{N} / 105^{\circ} \mathrm{W}$. Our software reads each participating RFC's XMRG file and grabs the hourly precipitation estimate for each HRAP grid cell.

Use the form above to download these files. Alternatively, you can download a program called wget that mimics ftp capability. Due to increased web security, the anonymous FTP server is no longer available. When using wget, the proper URL to provide is: http://www.srh.noaa.qov/ridqe2/Precip/qpehourlyshape/latest or http://www.srh.noaa.gov/ridge2/Precip/qpehourlyshape/VYYY/YYYMM MYYYMMDD (where YYYY is the year, MM is the month and DD is the day of month).

Le
We currently only provide a online archive back January 9, 2013. For data prior to that, please contact SR-TUA.Precip@noaa.gov. At this time, the offline archived data goes back to 2010. If you have any questions or problems, please contact SR-TUA.Precip@noaa.qov

NWS Rainfall Download (Point Shapefile)

National Severe Storm Laboratory - Multiple Radar/ Multiple Sensor (MRMS)
 used in weother forecost models, and for severe weather, aviotion, and hydromereavology forecossk.

Improving forecasts
The Multiple Radar Multiple Sensor (MRMS) system combines data streams from multiple radars, satellites, surface observations, upper air observations, lightning reports, rain ganges and numerical weather prediction models to produce a suite of decision-support products every two a suite of decision-support products every two
minutes. Because it provides better depictions of high-impact weather events such as heavy rain, snow, hail, tornadoes, and other threats, forecasters can quickly diagnose severe weather and issuc more accurate and earlier forecasts and warnings.

Research to operations success story Researchers at NOAA's National Severe Storms Laboratory designed the MRMS system to improve decision making within NOAA and other agencies - marking another NOAA research to operations success. Implementation of the system into NWWS operations was funded in part by the Disaster Relief Appropriations Act of 2013.

MRMS is being deployed operationally to the NWS, with completion by the end of 2016. A duplicate MRMS will be at NSSL to ensure new MRMS capabilities will be rapidly transitioned into NWS operations.

 system gives torecosters a more delaited piture of a thunderstorm's int Tensit, The top imoge is dato from a single rador ccampored with data ogy freecosis.

- Provides integrated technology precipitation estimates
- Evolving technology
- Data retrieval challenges

[^0]
NOAA Atlas 14 Data

- Nationwide coverage (10 volumes)
- Volume 2 covers Carolinas
- "Static" datasets
- Provides seamless Depth-Duration-Frequency:
- 5-min to 60-day duration
- 1-yr to 1000-yr frequency
- Digital access/retrieval through Hydrometeorological Design Study Center (HDSC) website

HDSC Precipitation DDF Web Access

USGS / Local Data

- Number of local/regional USGS studies that have independent or pseudo-independent DDF (or IDF) information
- Generally focused in more urban areas and generalized at municipal level
- Expected that generally similar to Atlas 14 estimates as often based on(or references) predecessors

Prepared in cooperation with the City of Charlotte and Mecklenburg County
Examples of USGS / Local Rainfall Probability Information

Frequency of Annual Maximum Precipitation in the City of Charlotte and Mecklenburg County, North Carolina, through 2004

i

INTENSITY-DURATION-FREQUENCY TABLE FOR GREENSBORO, NC
Precipitation Intensity Estimates (inches/hour)

Rainfall Duration	Annual Exceedance Probability (1 in _ years)						
	1-yr	$2-\mathrm{yr}$	5-yr	$10-\mathrm{yr}$	$25-\mathrm{yr}$	50-yr	100-yr
5 min	4.57	5.44	6.34	6.87	7.55	7.96	8.31
10 min	3.65	4.35	5.08	5.49	6.02	6.33	6.6
15 min	3.05	3.65	4.28	4.63	5.09	5.35	5.56
30 min	2.09	2.52	3.04	3.35	3.77	4.03	4.26
60 min	1.3	1.58	1.95	2.18	2.51	2.73	2.93
2 hr	0.77	0.93	1.16	1.31	1.53	1.68	1.83
3 hr	0.55	0.66	0.83	0.94	1.09	1.21	1.31
6 hr	0.33	0.4	0.5	0.57	0.67	0.75	0.83
12 hr	0.2	0.24	0.30	0.34	0.41	0.46	0.51
24 hr	0.12	0.14	0.18	0.20	0.24	0.27	0.3

Storm Event Magnitude Approach

Data Sources

- NWS Rainfall Data
- NOAA Atlas 14 Probability Data

General Approach

- Compile pre-staged rainfall reporting and probability data
- Integrate data into single dataset
- Develop calculation algorithms
- Extract storm precipitation data for desired time/duration from NWS site
- Associated with Pre-Stage/Loaded Data
- Calculate probability based on depth and duration
- Create probability rasters
- Summarize at watershed (HUC12) or desired AOI level
- Map results

NWS Reporting Point Grid

NOAA Atlas 14 Probability Data

NC 24-hr 100-yr Rainfall Depth Raster

Rainfall Processing Tools

Name: GetLatestQPE_ScriptTool.py
$\begin{array}{ll}\text { \# Name: } & \text { GetLatestQPE_ScriptTool.py } \\ \text { \# Type: } & \text { Python Script Tool for ArcGIs }\end{array}$
\# Purpose: Download and upzip latest qualitative precipitation estimate point shapefiles from NOAA Southeast Region Headquarters (SRH) website.
\#
\# Author:
Neal Banerjee, PE, CFM
\# Date: September 2016
\# ArcGIS Version: 10.0 and Higher
\# Python version: 2.7.5
\# Usage: GetLatestQPE <WorkDirectory>
\# Import necessary Python modules

03_Calculate Rainfall Probability

Linearly interpolate X values in a user-defined field based on four other probability-based fields with X values in the same table. For example can be used to calculate the return period of a given flow based on probability based flows of the 10-, 50-, 100-, and 500-yr events.

Case Study Applications

- SC/NC Hurricane Joaquin - October 2015
- SC/NC Hurricane Matthew - October 2016
- Mecklenburg County - August 2011

Hurricane Joaquin

- October 3 - 5, 2015
- Hurricane and stalled low pressure system
- 3" - 20" + of rainfall
- 20 fatalities
- Billions in losses and damage
- South-Central SC hit hardest

3-Day Probability Storm

$\rangle E S P$

Probability Summarized

- 2,750 HUC12s in Carolinas
- 40 sq mi average area \pm

Field	Value
HUC12	030501100102
Name	Upper Congaree Creek
AreaAcres	23613
MEAN_OutRP	195.627026

Hurricane Matthew

- October 7 - 8, 2016
- $3^{\prime \prime}-20^{\prime \prime}+$ of rainfall
- 26 fatalities in Carolinas
- New records at 8 gages
- Billions in losses and damage
- Extended flooding for weeks

Storm Event Rainfall Probability

< 1 yr	$10-25 \mathrm{yr}$	200-500 yr
1-2 yr	25-50 yr	$500-1000 \mathrm{yr}$
2-5yr	$50-100 \mathrm{yr}$	$>1000 \mathrm{yr}$
5-10 yr	100-200 yr	

PROVISIONAL - Map is based on provisional data and should be considered draft for reference only.
———1" Contours

$34^{\circ} 00^{\prime} \mathrm{W}$	
${ }^{0} 12.525$	$\stackrel{50}{\square}{ }^{\text {Miles }}$

F100C	Map Location	River Name and Location	County	$\begin{aligned} & \text { Peak } \\ & \text { Matthew } \\ & \text { Elevation (} \mathrm{ft} \text {) } \end{aligned}$	Previous Record (ft)	Approximate Return Event	Duration above flood stage
	Lumber River Basin						
Surry	1	Lumber River at Maxton	Robeson	186.5	184.5	100-year	N/A
	2	Lumber River at Lumberton, Above 1-95	Robeson	124.3	120.5	200-year	Currently above NWS flood stage
	3	Lumber River at Lumberton, 5 Ave.	Robeson	119.3	115.8	75-year	15 days (ongoing)
Davie	4	Lumber River at Boardman	Columbus	85.5	81 8\%	>500-year	N/
Davidson	Cape Fear River Basin						
Rowan	5	Little River at Manchester	Cumberland	155.0	151.8	>500-year	4.5 days
	6	Cape Fear at Lillington	Hamett	123.2	137.0	< 10-year	1 day
	7	Cape Fear River at Fayetteville	Cumberland	78.6	88.6	100-year	5 days
	8	Cape Fear River at Lock \#1 near Kelly	Bladen	24.8	26.0	100-year	6 days
	9	NE Cape Fear River near Chinquapin	Duplin	36.3	39.8	500-year	7 days
	Neuse River Basin						
	10	Crabtree Creek at Crabtree Valley Mall	Wake	225.5	230.5	35-year	1 day
	11	Crabtree Creek at Old Wake Forest Rd	Wake	205.8	N/A	100-year	1 day
	12	Neuse River near Clayton	Johnston	148.0	149.6	45-year	2 days
	13	Neuse River at Smithfield	Johnston	127.4	125.7	200-year	4.5 days
	14	Neuse River near Goldsboro	Wayne	71.6	70.8	90-year	10.25 days
	15	Neuse River at Kinston	Lenoir	38.1	37.5	75-year	11 days (ongoing)
	16	Hominy Swamp at Forest Hill Rd	Wilson	122.8	N/A	>500-year	1 day
	17	Contentnea Creek at Hookerton	Greene	37.9	42.0	>500-year	9.75 days

August 2011 Storm

- August 5, 2011
- Stalled low pressure system western-central Charlotte
- Major "flash flood"
- 7" + /- rain in short period
- 2 fatalities, 160 buildings flooded
- \$2M in damage

Multi-Duration Storm Event Magnitude

- Intense 6-hr storm concentrated over 3-4 hours
- Dense gage network
- Example of multi-duration probability

[^1]
Performance/Scalability

- Algorithms work very fast at large are levels (e.g. statewide)
- Probability calculations: seconds
- Mapping and AOI Summary: seconds to minutes
- Scalable nationwide
- Can use similar logic for rainfall forecast - 3-day advance in 6-hr increment
- Can automate retrieval and processing every hour

Summary and Conclusions

- Traditional rainfall reporting can lead to misinterpretation of storm event magnitude
- Combining readily available rainfall data, can estimate storm event magnitudes for multiple durations over large areas
- Same logic can be applied to historic storms or forecasted rainfall
- Data and algorithms are scalable and can be batched for automated processing

Looking Ahead

- Relate rainfall probability estimates with flood impacts
- Flood Warning / Gages (where exists)
- Existing models (e.g. RiskMAP) in ungaged areas

NC FIMAN in EOC During Hurricane Matthew

NC National Guard @NCNationalGuard • 4 h
Our \#AlwaysReady team is working closely with our State Emergency Response partners coordinating support efforts for Hurricane \#MatthewNC 2. NC Emergency Managem, NC Public Safety and NC Governor's. Office

4	战 10	- 8	**

Storm Event Rainfall Probability
Total Storm Rainfall (inches)
\qquad 1 Contours
$36^{\circ} 00^{\circ} \mathrm{N}=$
$35^{\circ} 00^{\circ} \mathrm{N}=$

$<1 \mathrm{yr}$	$50-100 \mathrm{yr}$
$1-2 \mathrm{yr}$	100-200 yr
$2-5 \mathrm{yr}$	200-500 yr
5-10 yr	500-1000 yr
$10-25 \mathrm{yr}$	> 1000 yr
25-50 yr	

PROVISIONAL - Map is based on provisional data and should be considered draft for reference only.

[^0]: / Esp Aundims.

[^1]: Notes

 - Rainfall accumulation totals based on Mecklenburg County / USGS Rain Gage Network (72 gages)
 - Rainfall probabilities calculated from gage rainfall depths and NOAA Atlas 14 published storm event probabilities

