
LiDAR FOA vs. IfSAR FOA: A Case Study for Base Level Engineering (formerly First Order Approximation)

Thuy Patton, CFM, Colorado Water Conservation Board John Loranger, PE, CFM AMEC Foster Wheeler

ASFPM 2016 Annual Conference "GREAT LAKES – GREAT PARTNERS"

Grand Rapids, Michigan , June 18–24

Agenda

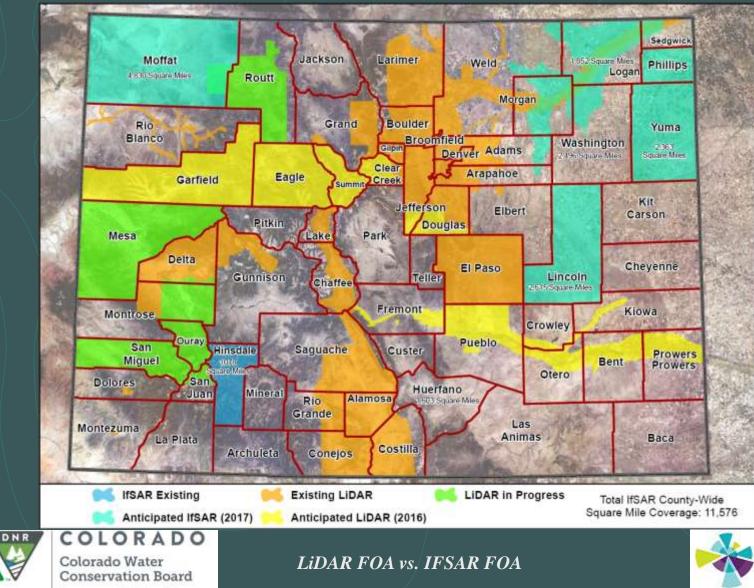
Background

- Topo availability
- NVUE Status for Colorado
- Hazard Mapping Program
- IFSAR vs. LiDAR

Project Overview

- Scope of Work
- AMEC FOA Tool
- Validation Process
- FEMA Guides and Standards
- Results/Summary

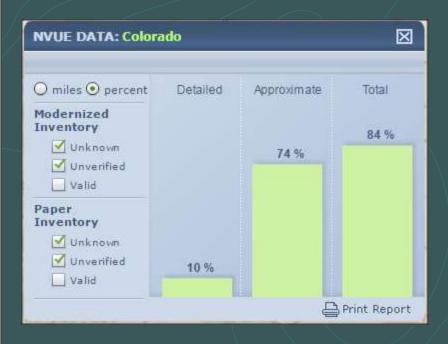
Challenges


Colorado Water Conservation Board

Department of Natural Resources

Topo Availability

amec


foster

wheeler

Department of Natural Resources

NVUE/CNMS Summary for Colorado

	National NVUE Attained Summary Table: FY16 - Q2						
	by State						
			Within Full Inventory				
	State	Region	VALID Miles	Full Inventory Denominator Miles	NVUE %		
			Total Inventory	As of 3/31/2016	Attained Total Inventory		
	New Mexico	06	6,725	22,430	30.0%		
	Oklahoma	06	13,428	38,103	35.2%		
	Texas	06	18,298	116,938			
	lowa Kansas	07	21,548	42,789	50.4% 28.1%		
	Missouri	07	14,453 31,570	51,358	28.1%	1	
		07		53,513 47,285			
	Nebraska		11,261		23.8%		
	Colorado	08	2,357	14,611	16.1%	\sim	
	Montana	08	1,177	11,850	0.0%		
	North Dakota	08	3,150	6,754	46.6%		
	South Dakota	08	2,328	13,044	17.9%		
	Utah	08	1,104	6,635	16.6%		
	Wyoming	08	1,301	11,049	11.8%		
	American Samoa	09	1	4	19.3%		
	Arizona	09	14,848	23,947	62.0%		
	California	09	13,113	29,344	44.7%		
	Guam	09	59	84	69.7%		
	Hawaii	09	355	519	68.3%		
	N. Marianas Islands	09	0	0	0.0%		
	Nevada	09	7,422	8,262	89.8%		
	Alaska	10	175	1,387	12.6%		
	Idaho	10	204	11,831	1.7%		

COLORADO

Colorado Water Conservation Board

Department of Natural Resources

Includes
 funding to map
 unmodernized
 counties in
 Colorado

NOTE: The governor signed this measure on 5/1/2015.

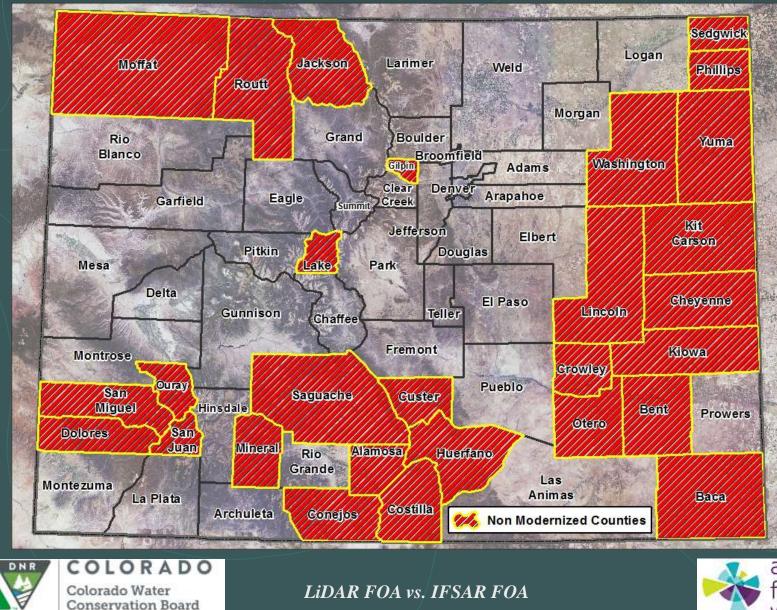
SENATE BILL 15-245

BY SENATOR(S) Grantham, Steadman, Lambert, Cooke, Garcia, Heath, Jones, Kefalas, Kerr, Martinez Humenik, Merrifield, Newell, Roberts, Todd, Cadman;

also REPRESENTATIVE(S) Young, Hamner, Rankin, Becker K., DelGrosso, Fields, Foote, Garnett, Ginal, Kraft-Tharp, Lontine, Melton, Mitsch Bush, Pettersen, Rosenthal, Ryden, Singer, Williams, Hullinghorst.

CONCERNING THE PROVISION OF STATE FUNDING FOR NATURAL HAZARD MAPPING.

Be it enacted by the General Assembly of the State of Colorado:


Colorado Hazard Mapping Program

COLORADO Colorado Water Conservation Board

Department of Natural Resources

Department of Natural Resources

Quality Level

Elevation		Horizontal Resolution Terms			Vertical Accuracy Terms		
Quality Levels (QL)	Source	Point Density	Nominal Pulse Spacing (NPS)	DEM Post Spacing	Vertical RMSEz	Equivalent Contour Accuracy	
QL 1	Lidar	8 pts/m ²	0.35 m	1/27 arc-sec ~1 meter	9.25 cm	1-ft	
QL 2	Lidar	2 pts/m ²	0.7 m	1/27 arc-sec ~1 meter	9.25 cm	1-ft	
QL 3	LIDAR	1 – 0.25 pts/m ²	1 – 2 m	1/9 arc-sec ~3 meters	≤18.5 cm	2-ft	
QL 4	Imagery	0.04 pts/m ²	5 m	1/3 arc-sec ~10 meters	46.3 cm – 139 cm	5 – 15 ft	
QL 5	IFSAR	0.04 pts/m ²	5 m	1/3 arc-sec ~10 meters	92.7 cm – 185 cm	10 – 20 ft	

The five pre-defined topographic Quality Levels (QLs), NEEA Final Report 3.29.12

COLORADO Colorado Water Conservation Board

Department of Natural Resources

IfSAR and LiDAR Technical Assessment (Region VIII)

- > 2015 South Dakota Pilot Study
- Validate quality of IfSAR within Region 8

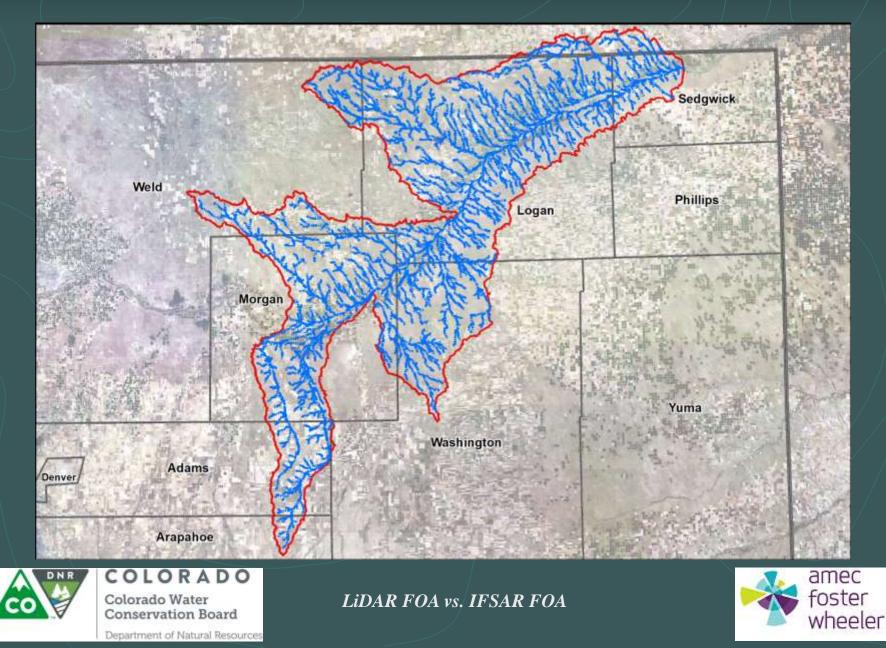
> Conclusions:

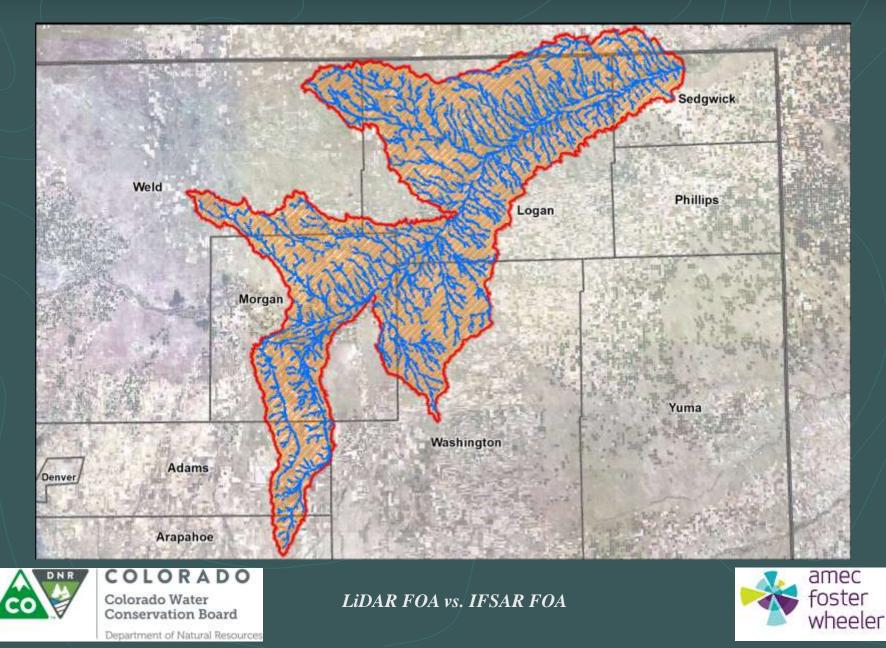
- Requires survey QC checkpoints for regulatory studies
- No mention of specific requirements for FOA analysis

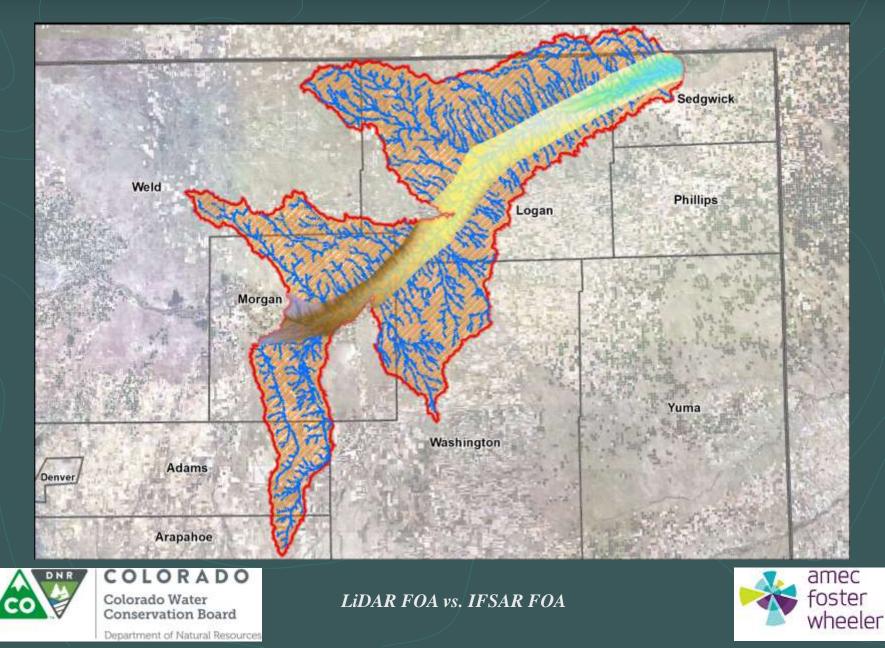
Technical Assessment: A Comparison of LiDAR and IfSAR Elevation Datasets Contract ###FEG 15-0:000 Contract # Compare 18-000 Contract Compare 18-000 Contract Compare 18-000

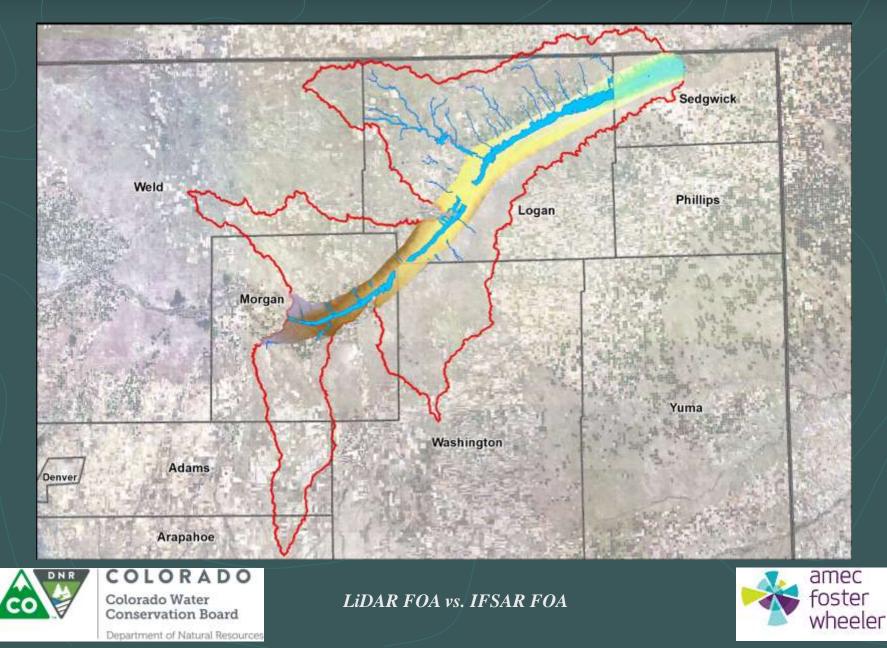
Property

245,4 MAA Vindenal Energymaa Management Ager 15MA Rogion VIII Atte: Byer PotraevalyDown Gladwelf Denver Federal Conter, ikulting 710 Denver, Colonade 80235-0367


Indeed/ord by


Company PTE N a IV led by ACCM and CDM South 1201 When Boolevard, Suite 100 Arlington, VA 20201




COLORADO Colorado Water Conservation Board Department of Natural Resources

First Order Approximates

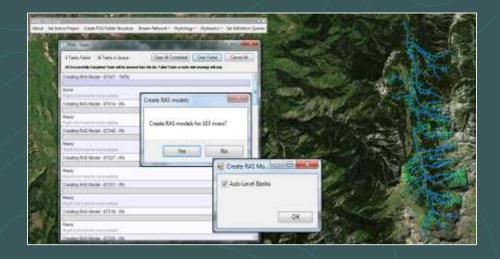
"a cost-effective approach for evaluating Zone A studies has been needed to address Zone A study miles in the CNMS inventory that are currently "unknown" or that are approaching their 5-year expiration and require revalidation. Assessing and evaluating these miles places increased demands on the Regions in a resourceconstrained environment.

Guidance for Flood Risk Analysis and Mapping

First Order Approximation

November 2015

COLORADO Colorado Water Conservation Board


Department of Natural Resources

Amec Foster Wheeler FOA Tool

ESRI add-inAutomated Tool

- Estimated Parameters
 - Cross Section Spacing
 - Cross Section Width
 - Bank Widths
 - Flow Path Buffer
 - Manning's N

HEC-RAS Engineering Judgement Upfront and QC

COLORADO Colorado Water Conservation Board Department of Natural Resources

Validation Process

COLORADO Colorado Water Conservation Board Department of Natural Resources

Validation Process

Comparison of FOA and Effective Zone A

- Data Inputs
 - •/ 100 Year +
 - 100 Year –
 - Effective Zone A Boundary
 - FOA topographic data
 - Vertical Tolerance ½ contour interval of effective topographic data
 - Horizontal Tolerance 75 feet

COLORADO Colorado Water Conservation Board Department of Natural Resources

Validation Process

FBS analysis of 100-Year + and 100-Year -

Risk Class	Characteristics	Floodplain Delineation Reliability ¹ : Zone A	Floodplain Delineation Reliability ¹ : All Other Zones
Α	High population and densities within the	+/- 1/2 contour	+/- 1.0 foot /
	floodplain and/or high anticipated growth	95%	95%
В	Medium population and densities within the	+/- 1/2 contour	+/- 1.0 foot /
	floodplain and/or modest anticipated growth	90%	90%
С	Low population and densities within the	+/- 1/2 contour	+/- 1.0 foot /
	floodplain, small or no anticipated growth	85%	85%
D	Undetermined risk; likely subject to flooding	N/A	N/A
E	Minimal risk of flooding; area not studied	N/A	N/A

COLORADO

Conservation Board

Department of Natural Resources

Colorado Water

Results/Summary

Length (mi)	Length (mi) Stream Name		IfSAR %Pass (5 ft V.T)	LiDAR % Pass (5 ft V.T)	
5.45	Wildcat Creek	112	62.5%	75.0%	
10.80	South Platte River	448	89.7%	99.6%	
9.03	South Platte River	243	97.5%	100.0%	
8.87	South Platte River	305	94.8%	98.0%	
13.52	South Platte River	457	71.1%	73.7%	
7.52	South Platte River	291	87.6%	94.5%	
0.78	South Platte River	38	84.2%	78.9%	
2.51	South Platte River	89	89.9%	93.3%	
7.86	South Platte River	218	84.4%	78.4%	
8.56	South Platte River	254	71.7%	82.7%	
4.83	South Platte River	152	82.9%	77.0%	
1.83	South Platte River	59	83.1%	91.5%	
2.07	South Platte River	66	72.7%	77.3%	
1.65	Dead Horse Draw	58	62.1%	55.2%	
1.80	Cris Lee Draw	44	77.3%	81.8%	
2.27	Cris Lee Draw	29	75.9%	75.9%	
0.61	Antelope Draw	38	86.8%	92.1%	
3.21		39	94.9%	100.0%	
3.26		56	100.0%	100.0%	
2.10		46	100.0%	100.0%	
5.96		115	87.8%	84.3%	
0.39		8	37.5%	75.0%	

COLORADO Colorado Water Conservation Board

Department of Natural Resources

Results/Summary

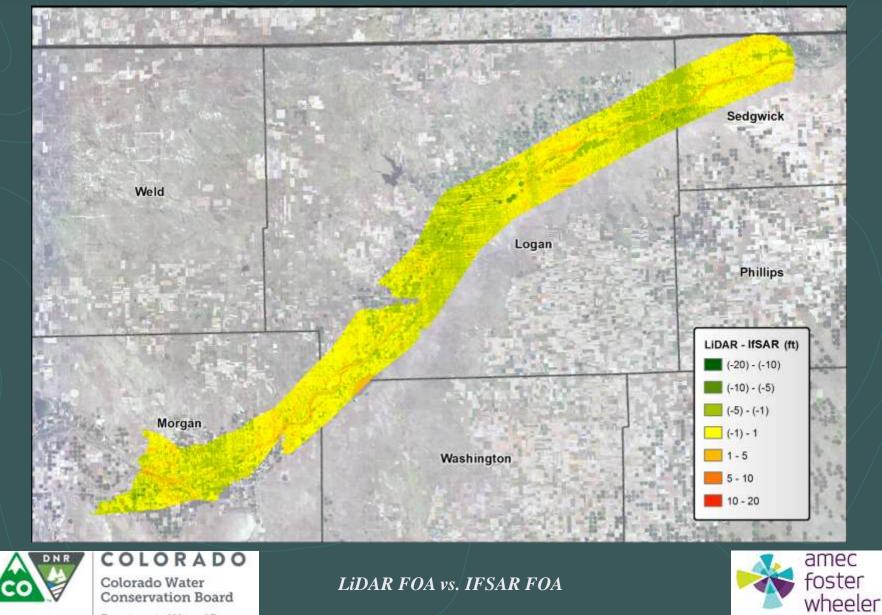
	IfSAR (5 foot V.T.)	LiDAR (5 foot V.T.)		
% Valid Streams >=85% (Risk Class C)	52.1%	52.1%		
Total Valid Miles	77.5	74.3		
Total Invalid Miles	59.8	61.6		

COLORADO Colorado Water Conservation Board

Department of Natural Resources

Results/Summary

Length (mi)	Stream Name	Number of Pts	IfSAR % Pass (2ft V.T.)	IfSAR % Pass (5ft V.T.)	IfSAR % Pass (10ft V.T.)	LiDAR % Pass (2ft V.T.)	LiDAR % Pass (5ft V.T.)	LiDAR % Pass (10ft V.T.)
5.45	Wildcat Creek	112	30.4%	62.5%	97.3%	39.3%	75.0%	98.2%
10.80	South Platte River	448	67.9%	89.7%	100.0%	60.9%	99.6%	100.0%
9.03	South Platte River	243	44.0%	97.5%	100.0%	59.7%	100.0%	100.0%
8.87	South Platte River	305	68.9%	94.8%	100.0%	58.7%	98.0%	100.0%
13.52	South Platte River	457	32.2%	71.1%	86.2%	34.8%	73.7%	87.1%
7.52	South Platte River	291	62.9%	87.6%	100.0%	64.9%	94.5%	100.0%
0.78	South Platte River	38	34.2%	84.2%	94.7%	31.6%	78.9%	100.0%
2.51	South Platte River	89	52.8%	89.9%	96.6%	41.6%	93.3%	100.0%
7.86	South Platte River	218	39.4%	84.4%	91.3%	38.1%	78.4%	95.9%
8.56	South Platte River	254	38.2%	71.7%	96.9%	53.5%	82.7%	98.4%
4.83	South Platte River	152	38.2%	82.9%	96.7%	50.0%	77.0%	98.7%
1.83	South Platte River	59	49.2%	83.1%	98.3%	50.8%	91.5%	100.0%
2.07	South Platte River	66	45.5%	72.7%	90.9%	59.1%	77.3%	93.9%
1.65	Dead Horse Draw	58	27.6%	62.1%	87.9%	32.8%	55.2%	79.3%
1.80	Cris Lee Draw	44	70.5%	77.3%	93.2%	72.7%	81.8%	93.2%
2.27	Cris Lee Draw	29	34.5%	75.9%	96.6%	55.2%	75.9%	100.0%
0.61	Antelope Draw	38	78.9%	86.8%	100.0%	84.2%	92.1%	100.0%
3.21		39	12.8%	94.9%	100.0%	35.9%	100.0%	100.0%
3.26		56	83.9%	100.0%	100.0%	80.4%	100.0%	100.0%
2.10		46	82.6%	100.0%	100.0%	73.9%	100.0%	100.0%
5.96		115	52.2%	87.8%	97.4%	55.7%	84.3%	100.0%
0.39		8	25.0%	37.5%	100.0%	0.0%	75.0%	100.0%



COLORADO Colorado Water Conservation Board

Department of Natural Resources

Elevation Difference Analysis

Department of Natural Resources

Challenges/Takeaway LiDAR cost/Availability > IfSAR vertical accuracy requirements LiDAR Batch Processing for large FOA areas Lower resolution with the IfSAR resulting in more engineering QC time Validation Gap between unverified/unknown historic Zone A's and modernized Zone A's

Colorado Water Conservation Board Department of Natural Resources

Questions or Comments?

COLORADO Colorado Water Conservation Board

Department of Natural Resources

